A New Semidefinite Programming Relaxation for the Quadratic Assignment Problem and Its Computational Perspectives

نویسندگان

  • Etienne de Klerk
  • Renata Sotirov
  • Uwe Truetsch
چکیده

Recent progress in solving quadratic assignment problems (QAPs) from the QAPLIB test set has come from mixed integer linear or quadratic programming models that are solved in a branchand-bound framework. Semide nite programming bounds for QAP have also been studied in some detail, but their computational impact has been limited so far, mostly due to the restrictive size of the early relaxations. Some recent progress has been made by studying smaller SDP relaxations and by exploiting group symmetry in the QAP data. In this work we introduce a new SDP relaxation where the matrix variables are only of the order of the QAP dimension, and we show how one may exploit group symmetry in the problem data for this relaxation. We also provide a detailed numerical comparison with related bounds from the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Semidefinite Programming Relaxations of the Traveling Salesman Problem

We consider a new semidefinite programming (SDP) relaxation of the symmetric traveling salesman problem (TSP), that may be obtained via an SDP relaxation of the more general quadratic assignment problem (QAP). We show that the new relaxation dominates the one in the paper: [D. Cvetković, M. Cangalović and V. Kovačević-Vujčić. Semidefinite Programming Methods for the Symmetric Traveling Salesman...

متن کامل

Semidefinite programming approach for the quadratic assignment problem with a sparse graph

The matching problem between two adjacency matrices can be formulated as the NP-hard quadratic assignment problem (QAP). Previous work on semidefinite programming (SDP) relaxations to the QAP have produced solutions that are often tight in practice, but such SDPs typically scale badly, involving matrix variables of dimension n where n is the number of nodes. To achieve a speed up, we propose a ...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Erratum: On Semidefinite Programming Relaxations of the Traveling Salesman Problem

We consider a new semidefinite programming (SDP) relaxation of the symmetric traveling salesman problem (TSP), that may be obtained via an SDP relaxation of the more general quadratic assignment problem (QAP). We show that the new relaxation dominates the one in the paper: [D. Cvetković, M. Cangalović and V. Kovačević-Vujčić. Semidefinite Programming Methods for the Symmetric Traveling Salesman...

متن کامل

From Linear to Semidefinite Programming: An Algorithm to Obtain Semidefinite Relaxations for Bivalent Quadratic Problems

In this paper, we present a simple algorithm to obtain mechanically SDP relaxations for any quadratic or linear program with bivalent variables, starting from an existing linear relaxation of the considered combinatorial problem. A significant advantage of our approach is that we obtain an improvement on the linear relaxation we start from. Moreover, we can take into account all the existing th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • INFORMS Journal on Computing

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2015